Scotland's leading electrospinning research group 

The Radacsi group's research focuses on fabricating nanostructured materials by electrospinning and developing 3D/4D cryo-electrospinning technology. Some of the materials fabricated in the Radacsi lab are: pharmaceuticals, scaffolds for tissue engineering, electrodes and biosensors.

 
 
Screenshot 2019-01-30 15.28.34.jpg

Open positions

Self-funded post-doctoral applicants are also welcome to apply to the group. Outstanding applicants can also consider the following scholarships (just a few examples):

Newton International Fellowships

Sir Henry Wellcome Postdoctoral Fellowships

Marie Skłodowska-Curie Fellowships

China Scholarships Council/University of Edinburgh Scholarship

CONACYT Mexico Scholarship

CONICYT Chile Scholarship

 

A full list of scholarships for post-doctoral researchers can be found here.

 

NOTES: 

Due to lots of applications, sorry that I might not be able to reply to all of you. If I am interested in your application, I will contact you directly, although it might take a long time. I appreciate your kind understanding.

Published Work

 

Journal Papers

2019

27. A. Keirouz, M. Zakharova, J. Kwon, C. Robert, V. Koutsos, A. Callanan, X. Chen, G. Fortunato, N. Radacsi, High-throughput production of silk fibroin-based electrospun nanofibers as a biomaterial for skin tissue engineering applications, Materials Science & Engineering C, 2019

 

26. J. Huang, V. Koutsos, N. Radacsi, Low-cost FDM 3D-printed modular electrospray/electrospinning setup for biomedical applications, 3D Printing in Medicine, 2019

 

25. M. Chung, G. Fortunato, N. Radacsi, Wearable Flexible Sweat Sensors for Health Care Monitoring: a Review, In press in Journal of the Royal Society Interface, 2019, 16:20190217

 

24. W. Guo, Q. Zhou, J. Zhang, M. Fu, N. Radacsi, Y. Li, Hydrothermal synthesis of Bi-doped SnO2/rGO nanocomposites and the enhanced gas sensing performance to benzene, Sensors and Actuators B: Chemical, 2019, 299, 126959.

 

23. I. Ismail, N. F. A. Bakar, T. H. Ling, N. Ideris, Z. H. M. Zain, N. Radacsi, Morphology and Conductivity Evaluation of Electrospun Polyacrylic Acid (PAA) Microfiber, Materials Today: Proceedings, 2019, 17, 574–583. 

 

22. C. Cleeton, A. Keirouz, X. Chen, N. Radacsi, Electrospun Nanofibers for Drug Delivery and Biosensing, ACS Biomaterials Science & Engineering, 2019, 59, 4183-4205.

 

21. L. F. Alexander and N. Radacsi, Application of electric fields for controlling crystallization, CrystEngComm, 2019, 21, 5014 - 5031.

 

20. R. Ambrus. A. Alshweiat, I. Csóka, G. Ovari, A. Esmail, N. Radacsi, 3D-printed electrospinning setup for the preparation of loratadine nanofibers with enhanced physicochemical properties, International Journal of Pharmaceutics, 2019, 567, 118455

 

19. A. Keirouz, G. Fortunato, M. Zhang, A. Callanan, N. Radacsi, Nozzle-free electrospinning of Polyvinylpyrrolidone/Poly(glycerol sebacate) fibrous scaffolds for skin tissue engineering applications, Medical Engineering & Physics, 2019, 71, 56-67.

 

18.  W. Guo, B. Zhao, Q. Zhou, Z. Wang, N. Radacsi, Fe-doped ZnO/reduced graphene oxide nanocomposite with synergic enhanced gas sensing performance for the effective detection of formaldehyde, ACS Omega, 2019, 4, 10252−10262.

 

17. N. Radacsi,  K. P. Giapis, G. Ovari, P. Szabó-Révész, R. Ambrus, Electrospun nanofiber-based niflumic acid capsules with superior physicochemical properties, Journal of Pharmaceutical and Biomedical Analysis, 2019, 166, 371-378.

 

2018

16. N. Radacsi, F. D. Campos, C. Chisholm, K. P. Giapis, Spontaneous formation of nanoparticles on electrospun nanofibres, Nature Communications, 2018, 9:4740 | DOI: 10.1038/s41467-018-07243-5 

 

15. M. Chung, N. Radacsi, C. Robert, E. D. McCarthy, A. Callanan, N. Conlisk, P. R. Hoskins, V. Koutsos, On the optimization of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry, 3D Printing in Medicine, 2018, 4, 2.

 

14. M. Vong, E. Speirs, C. Klomkliang, I. Akinwumi, W. Nuansing, N. Radacsi, Controlled three-dimensional polystyrene nano- and micro-structures fabricated by three-dimensional electrospinning, RSC Advances, 2018, 8, 15501-15512.

 

13. M. Vong and N. Radacsi, Fabrication of radially-aligned electrospun nanofibers in a 3-dimensional conical shape,  Electrospinning, 2018, 2, 1-14.

 

2016

12.     C. Xiouras*, N. Radacsi*, G. Sturm, G. D. Stefanidis, Microwave-assisted furfural synthesis from D-xylose in the presence of NaCl: Comparison of microwave heating with conventional heating, ChemSusChem, 2016, 9, 2159-2166.

*co-first author

 

11.     W. W. Li, N. Radacsi, H.J.M. Kramer, A.E.D.M. van der Heijden, J. H. ter Horst, Solid Separation from a Mixed Suspension through Electric-Field-Enhanced Crystallization, Angewandte Chemie, 2016, 128, 16322-16325.

 

2015    

10. Cs. Bartos, A. Kukovecz, R. Ambrus, G. Farkas, N. Radacsi, P. Szabó-Révész, Comparison of Static and Dynamic Sonication as Process Intensification for Particle Size Reduction Using a Factorial Design, Chemical Engineering and Processing: Process Intensification, 2015, 87, 26-34.

 

2014

9.    N. Radacsi, G. D. Stefanidis, P. Szabó-Révész, R.Ambrus, Analysis of Niflumic Acid Prepared by Rapid Microwave-assisted Evaporation, Journal of Pharmaceutical and Biomedical Analysis, 2014, 98, 16-21. 

 

2013

8.     N. Radacsi, J. H. ter Horst, G. D. Stefanidis, Microwave-assisted Evaporative Crystallization of Niflumic Acid for Particle Size Reduction, Crystal Growth & Design, 2013, 13, 4186–4189.

 

7.    N. Radacsi, A. E. D. M. van der Heijden, A. I. Stankiewicz, J. H. ter Horst, Nanoparticle generation by intensified solution crystallization using cold plasma, Chemical Engineering and Processing: Process Intensification, 2013, 71, 51-58.

 

6.     N.Radacsi, R. H. B. Bouma, E. L. M. Krabbendam-la Haye, J. H. ter Horst, A. I.Stankiewicz, A. E. D. M. van der Heijden, On the Reliability of Sensitivity TestMethods for Submicron-sized RDX and HMX Particles, Propellants, Explosives and Pyrotechnics, 2013, 38, 761-769.

 

5.   R. Ambrus, N. Radacsi, T. Szunyogh, A. E. D. M. van der Heijden, J. H. ter Horst, P. Szabó-Révész, Analysis of Niflumic Acid Crystals Prepared by Electrospray Crystallization, Journal of Pharmaceutical and Biomedical Analysis, 2013, 76, 1-7.

 

4.   N. Radacsi, Y. L. M. Creyghton, A. E. D. M. van derHeijden, A. I. Stankiewicz, J. H. ter Horst, Cold Plasma Synthesis of High-Quality Organic Nanoparticles at Atmospheric Pressure, Journal of Nanoparticle Research, 2013, 15:1445.                                         

 

2012

3.   N. Radacsi, R. Ambrus, P. Szabó-Révész, A. E. D. M. van der Heijden, J. H. ter Horst, Atmospheric Pressure Cold Plasma Synthesis of Submicron-sized Pharmaceuticals with Improved Physico-chemical Properties, Crystal Growth & Design, 2012, 12, 5090–5095.

 

2.  N. Radacsi, R. Ambrus, T. Szunyogh, P. Szabó-Révész, A. I. Stankiewicz, A. E. D. M. van der Heijden, J. H. ter Horst, Electrospray Crystallization for Nano-sized Pharmaceuticals with Improved Properties, Crystal Growth & Design, 2012, 12, 3514–3520.

 

2011

1. N. Radacsi, A. I. Stankiewicz, Y. L. M. Creyghton, A. E.D. M. van der Heijden, J. H. ter Horst, Electrospray Crystallization for High-Quality Submicron-Sized Crystals, Chemical Engineering and Technology, 2011, 34, 624-630.                                                  

Patents

1. N. Radacsi, & K. P. Giapis, K. P. Nanofibers Decorated with Nanoparticles and Methods of their Manufacture. U.S. Provisional Patent No. 62/350,117 (14 June, 2017).

Books

Invited book chapters

2019

1.  Chapter 7 - Fabrication of 3D and 4D polymer micro- and nanostructures based on electrospinning in the Elsevier Connect book '3D and 4D Printing of Polymer Nanocomposite Materials', 2019, Elsevier, ISBN 978-80-1281-680-59

Teaching

 

Process Safety and Environmental Issues in Chemical Engineering

In this course, students cover contemporary safety and environmental concerns as they impinge on the practising engineer, the legal and regulatory background to engineering activity, to ensure safe operation of hazardous processes, and the procedures to be followed in seeking a license from the environmental protection agencies for the operation of processes involving prescribed substances. Generation, propagation and the fate of pollutants discharged to the air, to water and to the ground are discussed along with means of mitigating emissions by elimination, substitution and pre-discharge treatment are considered. Methods of identifying process hazards are introduced leading to risk assessment and consequence analysis using hand calculation methods are presented to allow risk assessment and its application to the process industries to be appreciated.

This course discusses the synthesis, characterisation and application of nanomaterials used in Chemical and Biomedical Engineering. The course is open to 4th and 5th year students, plus PhD students are also welcome.

Nanomaterials in Chemical and Biomedical Engineering

Chemical Engineering Laboratory

This course applies theoretical principles, learnt in earlier and concurrent chemical engineering course, in a laboratory programme. The laboratory covers most aspects of chemical engineering.

Get in Touch

Contact the Radacsi Group regarding their published work, collaborations, consultation, open positions or any other inquires.

Address:

Sanderson Building, Edinburgh EH9, UK

Email:

Phone:

00441316513571

WeChat ID: kefehu

 

WeChat

00441316513571

School of Engineering, 

Sanderson Building,

Edinburgh EH9, UK

©2017 by Dr. Norbert Radacsi.