
Scotland's leading electrospinning research group
e-mail: n.radacsi@ed.ac.uk

Mission Statement
Our group's research focuses on fabricating nanostructured materials by electrospinning and further developing electrospinning technology to solve some of the biggest challenges of our century. Some of the nanomaterials fabricated in the NanoMaterials lab are used as electrode platforms, pharmaceuticals, scaffolds for tissue engineering, energy harvesters, biosensors, composites, skin substitutes.
Diversity Statement
Our group wholeheartedly pledges to oppose discrimination and hate through active allyship, continuous unlearning, learning, and listening. We will unceasingly improve all forms of inclusion and equity.


Open positions
There are currently no funded positions.
Self-funded applicants for Ph.D. or post-doctoral training are welcome to apply to the group. Outstanding applicants can also consider the following scholarships (just a few examples):
Newton International Fellowships
Sir Henry Wellcome Postdoctoral Fellowships
Marie Skłodowska-Curie Fellowships
China Scholarships Council/University of Edinburgh Scholarship
A full list of scholarships for post-doctoral researchers can be found here.
Published Work
Journal Papers
2023
71. F. S. Butt, N. A. Mazlan, A. Lewis, N. Radacsi, X. Fan, S. Yang, Y. Huang, Zeolitic Imidazolate Framework-8 Nanosheet Assemblies for High-Efficiency Small Molecule Adsorption, Chemical Engineering Journal Advances, 2023, 100573.
2022
2021
51. M. Chung, W. H. Skinner, C. Robert, C. J. Campbell, R. M. Rossi, V. Koutsos, N. Radacsi, Fabrication of a Wearable Flexible Sweat pH Sensor Based on SERS-active Au/TPU Electrospun Nanofibers, ACS Applied Materials & Interfaces, 2021, 13, 43, 51504–51518.
36. M. Badmus, J. Liu, N. Wang, N. Radacsi, Y. Zhao, Hierarchically electrospun nanofibers and their applications: A review, Nano Materials Science, 2021, 3, 213-232
2020
32. H. Souri, H. Banerjee, A. Jusufi, N. Radacsi, A. A. Stokes, I. Park, M. Sitti, A. Morteza,
31. A. Keirouz, M. Zakharova, J. Kwon, C. Robert, V. Koutsos, A. Callanan, X. Chen, G. Fortunato, N. Radacsi, High-throughput production of Silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications, Materials Science & Engineering C, 2020, 110939.
29. A. Keirouz, N. Radacsi, Q. Ren, A. Dommann, G. Beldi, K. Maniura‐Weber, R. M. Rossi, G. Fortunato, Nylon-6/Chitosan core/shell antimicrobial nanofibers for the prevention of mesh-associated surgical site infection, Journal of Nanobiotechnology, 2020, 18, 51.
27. A. Keirouz, M. Chung, J. Kwon, G. Fortunato, N. Radacsi, 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: a review, WIREs Nanomedicine & Nanobiotechnology, 2020, e1655. (Featured Journal Cover)
26. T. Chen, A. Lewis, Z. Chen, X. Fan, N. Radacsi, A. J. C. Semiao, H. Wang, Y. Huang, Smart ZIF-L mesh films with switchable superwettability synthesized via a rapid energy-saving process, Separation and Purification Technology, 2020, 240, 116647.
2019
2018
2016
*co-first author
2015
2014
9. N. Radacsi, G. D. Stefanidis, P. Szabó-Révész, R.Ambrus, Analysis of Niflumic Acid Prepared by Rapid Microwave-assisted Evaporation, Journal of Pharmaceutical and Biomedical Analysis, 2014, 98, 16-21.
2013
4. N. Radacsi, Y. L. M. Creyghton, A. E. D. M. van derHeijden, A. I. Stankiewicz, J. H. ter Horst, Cold Plasma Synthesis of High-Quality Organic Nanoparticles at Atmospheric Pressure, Journal of Nanoparticle Research, 2013, 15:1445.
2012
2011
Patents
Books
2012
1. N. Radacsi, Process Intensification in Crystallization: Submicron Particle Generation using Alternative Energy Forms, Ipskamp Drukkers: Enschede, 2012. ISBN 978-94-6191-414-9
Invited book chapters
2020
1. Chapter 7 - Fabrication of 3D and 4D polymer micro- and nanostructures based on electrospinning in the Elsevier Connect book '3D and 4D Printing of Polymer Nanocomposite Materials: Processes, Applications, and Challenges', 2020, Pages 191-229, Elsevier, ISBN 978-80-1281-680-59
Teaching
Process Safety and Environmental Issues in Chemical Engineering
In this course, students cover contemporary safety and environmental concerns as they impinge on the practising engineer, the legal and regulatory background to engineering activity, to ensure safe operation of hazardous processes, and the procedures to be followed in seeking a license from the environmental protection agencies for the operation of processes involving prescribed substances. Generation, propagation and the fate of pollutants discharged to the air, to water and to the ground are discussed along with means of mitigating emissions by elimination, substitution and pre-discharge treatment are considered. Methods of identifying process hazards are introduced leading to risk assessment and consequence analysis using hand calculation methods are presented to allow risk assessment and its application to the process industries to be appreciated.
This course discusses the synthesis, characterisation and application of nanomaterials used in Chemical and Biomedical Engineering. The course is open to 4th and 5th year students, plus PhD students are also welcome.
Nanomaterials in Chemical and Biomedical Engineering
Study Projects
In this course, 4th year undergraduate chemical engineering students write a literature review on a topic given by the academic supervisor. The academic supervisor teaches the students on writing literature reviews and often these reviews are published in international peer-reviewed journals. See examples under the 'Publications' part.
Get in Touch
Contact the Radacsi Group regarding their published work, collaborations, consultation, open positions or any other inquires.

Address:
Sanderson Building, Edinburgh EH9, UK
Email:
Phone:
00441316513571
WeChat ID: kefehu