Scotland's leading electrospinning research group 

Screenshot 2019-10-19 00.42.44.png

Mission Statement

Our group's research focuses on fabricating nanostructured materials by electrospinning and further developing electrospinning technology to solve some of the biggest challenges of our century. Some of the nanomaterials fabricated in the NanoMaterials lab are used as electrode platforms, pharmaceuticals, scaffolds for tissue engineering, energy harvesters, biosensors, composites, skin substitutes.

Diversity Statement

Our group wholeheartedly pledges to oppose discrimination and hate through active allyship, continuous unlearning, learning, and listening. We will unceasingly improve all forms of inclusion and equity.

 
 

Open positions

A fully-funded Ph.D. position is open in the area of 3D bioprinting. Please apply before 17 January 2022.

Self-funded post-doctoral applicants are also welcome to apply to the group. Outstanding applicants can also consider the following scholarships (just a few examples):

Newton International Fellowships

Sir Henry Wellcome Postdoctoral Fellowships

Marie Skłodowska-Curie Fellowships

China Scholarships Council/University of Edinburgh Scholarship

CONACYT Mexico Scholarship

CONICYT Chile Scholarship

 

A full list of scholarships for post-doctoral researchers can be found here.

Published Work

 

Journal Papers

2022

56. Y. Chen, X. Dong, M. Shafiq, G. Myles, N. Radacsi, X. Mo, Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering, Advanced Fiber Materials, In Press, 2022

 

55. F. J. Diaz Sanchez, M. Chung, M. Waqas, V. Koutsos, S. Smith, N. Radacsi, Sponge-like piezoelectric micro- and nanofiber structures for mechanical energy harvesting, Nano Energy, 2022, 98, 107286.

54. M. Higgins, S. Leung, N. Radacsi, 3D printing surgical phantoms and their role in the visualization of medical procedures, Annals of 3D Printed Medicine, 2022, 6, 100057.

 

53. D. Yang, F. Faraz, J. Wang, N. Radacsi, Combination of 3D Printing and Electrospinning Techniques for Biofabrication, Advanced Materials Technologies, 2022, 2101309. (Front journal cover).

2021

52. T. Muenwacha, O. Weeranantanapan, N. Chudapongse, F. J. Diaz Sanchez, S. Maensiri, N. Radacsi, W. Nuansing, Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering, Materials, 2021, 14, 7684.

51. M. Chung, W. H. Skinner, C. Robert, C. J. Campbell, R. M. Rossi, V. Koutsos, N. Radacsi, Fabrication of a Wearable Flexible Sweat pH Sensor Based on SERS-active Au/TPU Electrospun Nanofibers,  ACS Applied Materials & Interfaces, 2021, 13, 43, 51504–51518.

 

50. I. Ismail, N. F. Abu Bakar, H. L. Tan, N. Ideris, Z. M. Zain, S. S. Idris, N. Radacsi, Ultra-sensitive electrosprayed AuNPs decorated PAA/PAN electrospun nanofibers glucose sensor, Journal of Materials Research, 2021, 36, 4317–4328.

 

49. W. H. Skinner, M. Chung, S. Mitchell, A. Akidil, R. Goodwin, A. Stokes, C. J. Campbell, A SERS-active electrospun polymer mesh for spatially localized pH measurements of the cellular microenvironment, ACS Analytical Chemistry, 2021, 93, 41, 13844–13851.

48. A. Lewis, T. Chen, F. S. Butt, X. Wei, N. Radacsi, X. Fan, Y. Huang, Facile Fabrication of Zeolitic Imidazolate Framework Hollow Fibre Membranes via A Novel Scalable Continuous Fluid Circulation Process, Nanoscale, 2021, 13, 14644-14655.

47. M. Vong, F. J. Diaz Sanchez, A. Keirouz, W. Nuansing, N. Radacsi, Ultrafast fabrication of Nanofiber-based 3D Macrostructures by 3D electrospinning, Materials & Design, 2021, 208, 109916.

 

46. F. Fazal, S. Raghav, A. Callanan, V. Koutsos, N. Radacsi, Recent advancements in the bioprinting of vascular grafts, Biofabrication, 2021, 13, 032003.

45. N. F. Abu Bakar, M. H. Hussain, I. Ismail, N. Othman, H. L. Tan, Z. M. Zain, M. N. Naim, N. Radacsi, Electrospun Polyetherimide-Graphene Oxide Nanofiber Electrodes for Enhanced Conductivity, Journal of Fiber Science and Technology, 2021, 77, 136-145.

44. M. H. Hussain, L. P. Fook, M. K. Sanira Putri, H. L. Tan, N. F. Abu Bakar, N. Radacsi, Advances on Ultra-sensitive Electrospun Nanostructured Electrochemical and Colorimetric Sensors for Diabetes Mellitus Detection, Nano Materials Science, 2021, 3, 321-343.

43. M. Waqas, A. Keirouz, M. K. Sanira Putri, F. Faraz, F. J. Diaz Sanchez, M. Waqas, D. Ray, V. Koutsos, N. Radacsi, Design and development of a nozzle-free electrospinning device for the high-throughput production of biomaterial nanofibers, Medical Engineering and Physics, 2021, 92, 80-87.

42. F. Fazal, F. J. Diaz Sanchez, M. Waqas, V. Koutsos, N. Radacsi, A modified 3D printer as a hybrid bioprinting-electrospinning system for use in vascular tissue engineering applications, Medical Engineering and Physics, 2021, 94, 52-60.

41. A. Tsiamis, F. Diaz Sanchez, N. Hartikainen, M. Chung, S. Mitra, Y. C. Lim, H. L. Tan, N. Radacsi, Graphene Wrapping of Electrospun Nanofibers for Enhanced Electrochemical Sensing, ACS Omega, 2021, 6, 16, 10568–10577.

 

40. L. É. Uhljar, S. Y. Kan, N. Radacsi, V. Koutsos, P. Szabó-Révész, R. Ambrus, In Vitro Drug Release, Permeability, and Structural Test of Ciprofloxacin-Loaded Nanofibers, Pharmaceutics, 2021, 13, 556.

 

39. T. Chen, F. S. Butt, M. Zhang, X. Wei, A. Lewis, N. Radacsi, A. JC Semiao, J. Han, Y. Huang, Ultra-Permeable Zeolitic Imidazolate Frameworks-intercalated Graphene Oxide Membranes for Unprecedented Ultrafast Molecular Separation, Chemical Engineering Journal, 2021, 419, 129507.

 

38. M. Zhang, X. Chen, N. Radacsi, New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies, Journal of Controlled Release, 2021, 329, 96-120.

 

37. A. Moreira, D. Lawson, L. Onyekuru, K. Dziemidowicz, U. Angkawinitwong, P. F. Costa, N. Radacsi, G. R. Williams, Protein encapsulation by electrospinning and electrospraying, Journal of Controlled Release, 2021, 329, 1172–1197.

36. M. Badmus, J. Liu, N. Wang, N. Radacsi, Y. Zhao, Hierarchically electrospun nanofibers and their applications: A review, Nano Materials Science, 2021, 3, 213-232

2020

35. A. Bajpai, A. Baigent, S. Raghav, C. Ó. Brádaigh, V. Koutsos, N. Radacsi, 4D Printing: Materials, Technologies, and Future Applications in the Biomedical Field, Sustainability, 2020, 12, 10628.

34. C. Robert , W. B. Thitasiri , D. Mamalis, Z. E. Hussein, M. Waqas, D. Ray, N. Radacsi, V. Koutsos, Improving through-thickness conductivity of CFRP using CNT/polyethylenimine at the interlaminar region, Journal of Applied Polymer Science, 2020, e49749.

33. J. McClements, M. Zhang, N. Radacsi, V. Koutsos, Measuring the Interactions between Carbon Black Nanoparticles and Latex Thin Films in Aqueous Media using AFM Force Spectroscopy, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 124920.

32. H. Souri, H. Banerjee, A. Jusufi, N. Radacsi, A. A. Stokes, I. Park, M. Sitti, A. Morteza,

Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications, Advanced Intelligent Systems, 2020, 2000039.

31. A. Keirouz, M. Zakharova, J. Kwon, C. Robert, V. Koutsos, A. Callanan, X. Chen, G. Fortunato, N. Radacsi, High-throughput production of Silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications, Materials Science & Engineering C, 2020, 110939.

30. H. L. Tan, M. K. Sanira Putri, S. S. Idris, N. Hartikainen, N. F. Abu Bakar, A. Keirouz, N. Radacsi, High-Throughput Fabrication of Carbonized Electrospun Polyacrylonitrile/Poly(acrylic acid) Nanofibers with Additives for Enhanced Electrochemical Sensing, Journal of Applied Polymer Science, 2020, e49341.

29. A. Keirouz, N. Radacsi, Q. Ren, A. Dommann, G. Beldi, K. Maniura‐Weber, R. M. Rossi, G. Fortunato, Nylon-6/Chitosan core/shell antimicrobial nanofibers for the prevention of mesh-associated surgical site infection, Journal of Nanobiotechnology, 2020, 18, 51.

28. J. Huang, V. Koutsos, N. Radacsi, Low-cost FDM 3D-printed modular electrospray/electrospinning setup for biomedical applications, 3D Printing in Medicine, 2020, 6:8.

27. A. Keirouz, M. Chung, J. Kwon, G. Fortunato, N. Radacsi, 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: a review, WIREs Nanomedicine & Nanobiotechnology, 2020, e1655. (Featured Journal Cover)

26. T. Chen, A. Lewis, Z. Chen, X. Fan, N. Radacsi, A. J. C. Semiao, H. Wang, Y. Huang, Smart ZIF-L mesh films with switchable superwettability synthesized via a rapid energy-saving process, Separation and Purification Technology, 2020, 240, 116647.

2019

25. M. Chung, G. Fortunato, N. Radacsi, Wearable Flexible Sweat Sensors for Health Care Monitoring: a Review, Journal of the Royal Society Interface, 2019, 16:20190217

 

24. W. Guo, Q. Zhou, J. Zhang, M. Fu, N. Radacsi, Y. Li, Hydrothermal synthesis of Bi-doped SnO2/rGO nanocomposites and the enhanced gas sensing performance to benzene, Sensors and Actuators B: Chemical, 2019, 299, 126959.

 

23. I. Ismail, N. F. Abu Bakar, H. L. Tan, N. Ideris, Z. H. M. Zain, N. Radacsi, Morphology and Conductivity Evaluation of Electrospun Polyacrylic Acid (PAA) Microfiber, Materials Today: Proceedings, 2019, 17, 574–583. 

 

22. C. Cleeton, A. Keirouz, X. Chen, N. Radacsi, Electrospun Nanofibers for Drug Delivery and Biosensing, ACS Biomaterials Science & Engineering, 2019, 59, 4183-4205.

 

21. L. F. Alexander and N. Radacsi, Application of electric fields for controlling crystallization, CrystEngComm, 2019, 21, 5014 - 5031.

 

20. R. Ambrus. A. Alshweiat, I. Csóka, G. Ovari, A. Esmail, N. Radacsi, 3D-printed electrospinning setup for the preparation of loratadine nanofibers with enhanced physicochemical properties, International Journal of Pharmaceutics, 2019, 567, 118455

 

19. A. Keirouz, G. Fortunato, M. Zhang, A. Callanan, N. Radacsi, Nozzle-free electrospinning of Polyvinylpyrrolidone/Poly(glycerol sebacate) fibrous scaffolds for skin tissue engineering applications, Medical Engineering & Physics, 2019, 71, 56-67.

 

18.  W. Guo, B. Zhao, Q. Zhou, Z. Wang, N. Radacsi, Fe-doped ZnO/reduced graphene oxide nanocomposite with synergic enhanced gas sensing performance for the effective detection of formaldehyde, ACS Omega, 2019, 4, 10252−10262.

 

17. N. Radacsi,  K. P. Giapis, G. Ovari, P. Szabó-Révész, R. Ambrus, Electrospun nanofiber-based niflumic acid capsules with superior physicochemical properties, Journal of Pharmaceutical and Biomedical Analysis, 2019, 166, 371-378.

 

2018

16. N. Radacsi, F. D. Campos, C. Chisholm, K. P. Giapis, Spontaneous formation of nanoparticles on electrospun nanofibres, Nature Communications, 2018, 9:4740 | DOI: 10.1038/s41467-018-07243-5 

 

15. M. Chung, N. Radacsi, C. Robert, E. D. McCarthy, A. Callanan, N. Conlisk, P. R. Hoskins, V. Koutsos, On the optimization of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry, 3D Printing in Medicine, 2018, 4, 2.

 

14. M. Vong, E. Speirs, C. Klomkliang, I. Akinwumi, W. Nuansing, N. Radacsi, Controlled three-dimensional polystyrene nano- and micro-structures fabricated by three-dimensional electrospinning, RSC Advances, 2018, 8, 15501-15512.

 

13. M. Vong and N. Radacsi, Fabrication of radially-aligned electrospun nanofibers in a 3-dimensional conical shape,  Electrospinning, 2018, 2, 1-14.

 

2016

12.     C. Xiouras*, N. Radacsi*, G. Sturm, G. D. Stefanidis, Microwave-assisted furfural synthesis from D-xylose in the presence of NaCl: Comparison of microwave heating with conventional heating, ChemSusChem, 2016, 9, 2159-2166.

*co-first author

 

11.     W. W. Li, N. Radacsi, H.J.M. Kramer, A.E.D.M. van der Heijden, J. H. ter Horst, Solid Separation from a Mixed Suspension through Electric-Field-Enhanced Crystallization, Angewandte Chemie, 2016, 128, 16322-16325.

 

2015    

10. Cs. Bartos, A. Kukovecz, R. Ambrus, G. Farkas, N. Radacsi, P. Szabó-Révész, Comparison of Static and Dynamic Sonication as Process Intensification for Particle Size Reduction Using a Factorial Design, Chemical Engineering and Processing: Process Intensification, 2015, 87, 26-34.

 

2014

9.    N. Radacsi, G. D. Stefanidis, P. Szabó-Révész, R.Ambrus, Analysis of Niflumic Acid Prepared by Rapid Microwave-assisted Evaporation, Journal of Pharmaceutical and Biomedical Analysis, 2014, 98, 16-21. 

 

2013

8.     N. Radacsi, J. H. ter Horst, G. D. Stefanidis, Microwave-assisted Evaporative Crystallization of Niflumic Acid for Particle Size Reduction, Crystal Growth & Design, 2013, 13, 4186–4189.

 

7.    N. Radacsi, A. E. D. M. van der Heijden, A. I. Stankiewicz, J. H. ter Horst, Nanoparticle generation by intensified solution crystallization using cold plasma, Chemical Engineering and Processing: Process Intensification, 2013, 71, 51-58.

 

6.     N.Radacsi, R. H. B. Bouma, E. L. M. Krabbendam-la Haye, J. H. ter Horst, A. I.Stankiewicz, A. E. D. M. van der Heijden, On the Reliability of Sensitivity TestMethods for Submicron-sized RDX and HMX Particles, Propellants, Explosives and Pyrotechnics, 2013, 38, 761-769.

 

5.   R. Ambrus, N. Radacsi, T. Szunyogh, A. E. D. M. van der Heijden, J. H. ter Horst, P. Szabó-Révész, Analysis of Niflumic Acid Crystals Prepared by Electrospray Crystallization, Journal of Pharmaceutical and Biomedical Analysis, 2013, 76, 1-7.

 

4.   N. Radacsi, Y. L. M. Creyghton, A. E. D. M. van derHeijden, A. I. Stankiewicz, J. H. ter Horst, Cold Plasma Synthesis of High-Quality Organic Nanoparticles at Atmospheric Pressure, Journal of Nanoparticle Research, 2013, 15:1445.                                         

 

2012

3.   N. Radacsi, R. Ambrus, P. Szabó-Révész, A. E. D. M. van der Heijden, J. H. ter Horst, Atmospheric Pressure Cold Plasma Synthesis of Submicron-sized Pharmaceuticals with Improved Physico-chemical Properties, Crystal Growth & Design, 2012, 12, 5090–5095.

 

2.  N. Radacsi, R. Ambrus, T. Szunyogh, P. Szabó-Révész, A. I. Stankiewicz, A. E. D. M. van der Heijden, J. H. ter Horst, Electrospray Crystallization for Nano-sized Pharmaceuticals with Improved Properties, Crystal Growth & Design, 2012, 12, 3514–3520.

 

2011

1. N. Radacsi, A. I. Stankiewicz, Y. L. M. Creyghton, A. E.D. M. van der Heijden, J. H. ter Horst, Electrospray Crystallization for High-Quality Submicron-Sized Crystals, Chemical Engineering and Technology, 2011, 34, 624-630.                                                  

 

Teaching

 

Process Safety and Environmental Issues in Chemical Engineering

In this course, students cover contemporary safety and environmental concerns as they impinge on the practising engineer, the legal and regulatory background to engineering activity, to ensure safe operation of hazardous processes, and the procedures to be followed in seeking a license from the environmental protection agencies for the operation of processes involving prescribed substances. Generation, propagation and the fate of pollutants discharged to the air, to water and to the ground are discussed along with means of mitigating emissions by elimination, substitution and pre-discharge treatment are considered. Methods of identifying process hazards are introduced leading to risk assessment and consequence analysis using hand calculation methods are presented to allow risk assessment and its application to the process industries to be appreciated.

This course discusses the synthesis, characterisation and application of nanomaterials used in Chemical and Biomedical Engineering. The course is open to 4th and 5th year students, plus PhD students are also welcome.

Nanomaterials in Chemical and Biomedical Engineering

Study Projects

In this course, 4th year undergraduate chemical engineering students write a literature review on a topic given by the academic supervisor. The academic supervisor teaches the students on writing literature reviews and often these reviews are published in international peer-reviewed journals. See examples under the 'Publications' part.

Get in Touch

Contact the Radacsi Group regarding their published work, collaborations, consultation, open positions or any other inquires.

contact-banner.jpg

Your details were sent successfully!

Address:

Sanderson Building, Edinburgh EH9, UK

Email:

Phone:

00441316513571

  • facebook
  • twitter

WeChat ID: kefehu